

Cancer-associated glomerulopathies

Pierre Ronco
INSERM Unit 1155
and Division of Nephrology,
Tenon hospital, Paris, France

Iran SN/ISN
November 21st, 2019

Spectrum of renal involvement in cancer

- Glomerulopathies
 - Infiltration of renal parenchyma by malignant cells
 - Retroperitoneal fibrosis
 - Fluid and electrolyte disorders (tumor lysis syndrome, hypercalcemia, uric nephropathy, ectopic ADH secretion)
 - Toxic nephropathies (chemotherapy, radiation nephritis)

Outline

- Epidemiology
- Carcinoma-associated glomerulopathies
 - Membranous nephropathy
 - Others: IgA/HSP, RPGN/vasculitis, AA-amyloidosis
- Hematologic malignancy-associated glomerulopathies
 - Hodgkin disease
 - CLL, related B-cell lymphomas, Waldenström macroglobulinemia
 - Plasma cell dyscrasias
 - Myeloproliferative neoplasms

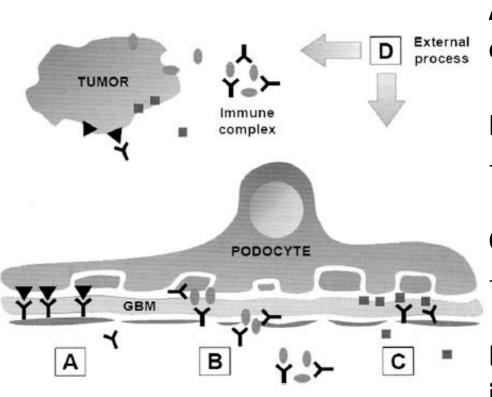
Epidemiology

- Prevalence of proteinuria and hematuria in patients with cancer: 7
 to 34% but overestimated:
 - threshold of proteinuria low;
 - hematuria detected by qualitative dipstick tests only.
- Prevalence of cancer in patients with glomerulopathy :
 - 11% in pts with nephrotic syndrome (Lee, 1966);
 - risk for cancer x 3.5 at 1-4 years vs general population but not confirmed later (Danish Kidney Biopsy Registry: Birkeland, 2003);
 - risk x 8.3 and 5.4 for bladder and lung cancers in patients with alb. to creat. ratio in the highest quintile (Jørgensen, 2008).

Potential detection bias

- Patients with membranous nephropathy more aggressively screened for cancer
- Demographic characteristics of the population:
 the elderly (membranous nephropathy and cancer more frequent)
- Use of alkylating agents to treat glomerular disease

Membranous nephropathy and cancer


- Association first reported in 1966 (Lee et al)
- Prevalence of cancer in pts with MN: 6% 22%
- Most cases (80%) discovered before or at the time of kidney diagnosis
- Age- and sex- adjusted standardized incidence ratio: 2.25;
 continues to increase for more than 5 years after histologic diagnosis of nephropathy (Bjørneklett, 2007)
- Heavy smoking increases the likelyhood of malignancy in MN patients
- Most frequently associated tumors: lung, gastrointestinal, and prostate carcinomas

Criteria for the diagnosis of paraneoplastic glomerulopathy

- A remission occurs after complete removal of the tumor by surgery, chemotherapy or other treatments
- A renal relapse accompanies recurrence of the neoplasia
- A pathophysiologic link is established between cancer and MN: detection of tumor antigens and antitumor antibodies within subepithelial immune deposits

However, these criteria are rarely fulfilled

Mechanisms by which solid tumors and MN may be linked

A: Shared antigen/epitope on tumor and podocyte

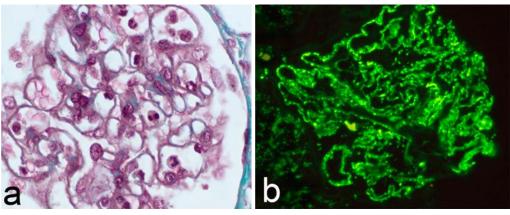
B: Shed tumor antigen

→ blood immune complexes

C: « Planted » tumor antigen

→in situ immune complexes

D : Oncogenic virus or altered immune function


Beck et al, Seminars Nephrol 2010 30:635

A case of paraneoplastic glomerulopathy

- Male, 49
- Heavy smoker (25 year packs)
- Anemia, weight loss

Opacity in the right lung apex Epidermoid lung cancer Nephrotic syndrome (2 months later)

Membranous nephropathy

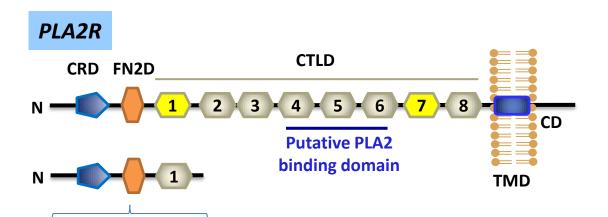
 Complete remission of kidney disease after 3 months following surgery (10-year follow-up)

Should all patients > 50 years be explored in search of cancer ?

- Painful
- Costly
- Low yield

Which patients should be targeted?

Recent advances in diagnostic tools


- Determination of subclass of IgG deposited in glomeruli
- Assays of anti-PLA2R antibodies in blood and PLA2R antigen in kidney biopsy (immune deposits)
- Number of inflammatory cells/glomeruli

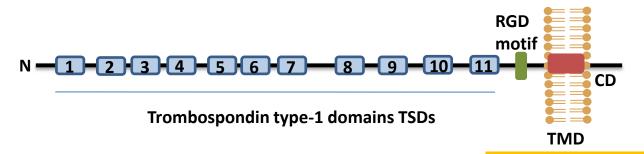
IgG subclass distribution according to underlying disease

	IgG ₁	IgG ₂	IgG ₃	IgG ₄
Idiopathic	+ to +++	+	+	+++
Lupus	+++	+++	++	±
Neoplasia	+++	+++	+	0 to ++


Noël LH et al, Clin Immunol Immunopathol 1988, 46:186; Ohtani et al, NDT, 2004, 19:574; Qu et al, NDT 2012, 27:1931; Debiec, personal data

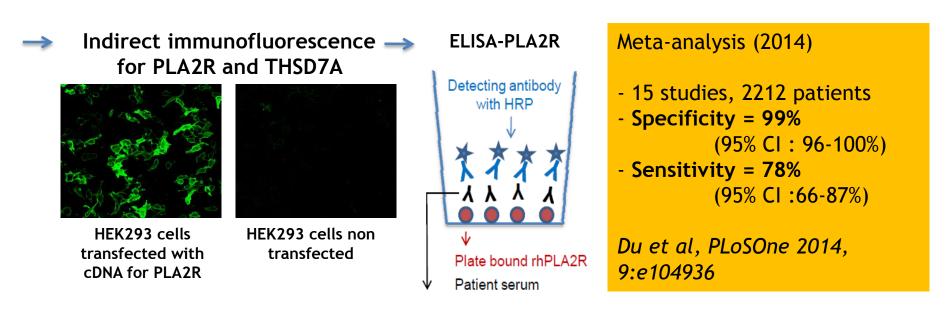
A paradigm shift in diagnostic, monitoring and classification of patients with MN

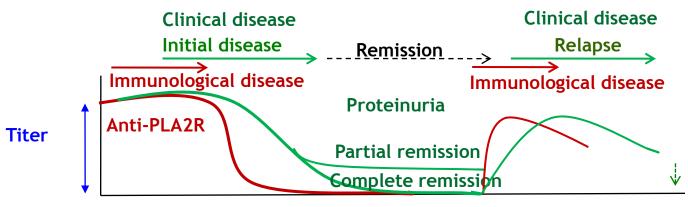
Beck et al, NEJM 2009,361:11 Kao et al, JASN 2015,26:291 Fresquet et al, JASN 2015,26:302 Seitz et al, JASN 2016, 27:1517; JASN 2018 ;29:401 (epitope speading correlated with outcome)


Conformational epitope is located in this region

31 mer peptide from this domain

70% to 85% of adult MN patients

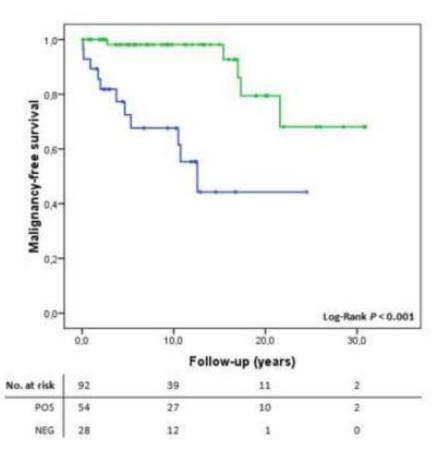

Thrombospondin type-1 domain containing 7A (THSD7A)



Tomas et al, NEJM 2014, 371: 2277 Tomas et al, J Clin Invest 2016, 126:2519

10 % of PLA2R-negative patients with MN

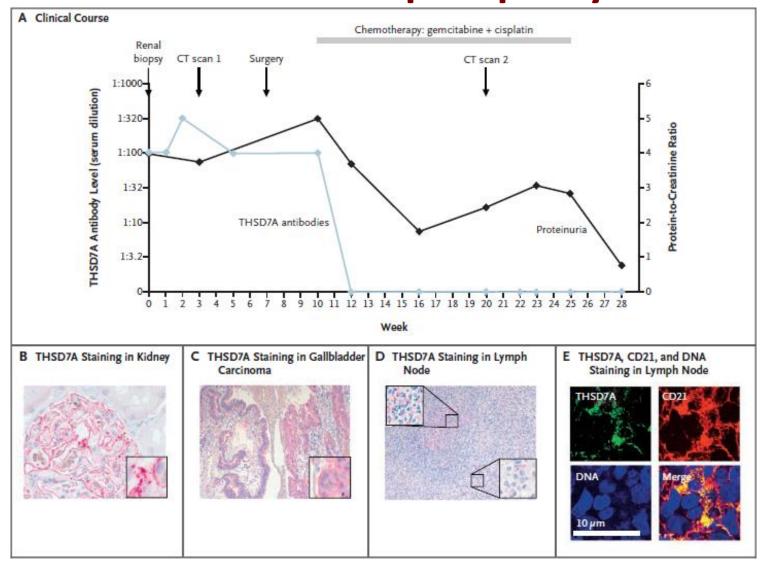
Serological tests for the diagnosis and monitoring of patients with MN



The association of malignancy with MN is stronger if anti-PLA₂R serology is negative

Table 4. Multiple Cox regression analysis for patients malignancy-free survival in iMN.

Parameter	Hazard ratio	95% CI	P
Positive aPLA2R	0.078	0.017 - 0.360	0.001
Age*	1.058	1.009 - 1.109	0.02
Male gender	5.274	1.342 - 20.727	0.02
Proteinuria [†]	1.201	1.064 - 1.356	0.003
$\mathbf{Immuno suppression}^{\intercal}$	0.668	0.121 - 3.681	0.64


CI, confidence interval.

Timmermans S, et al. Am J Kidney Dis 2013 62:1223

At the time of renal biopsy.

A role for THSD7A in cancer-associated membranous nephropathy

Hoxha et al, NEJM 2016 374:1995

Prevalence of PLA2R and THSD7A-Ab in cancer patients is controversial

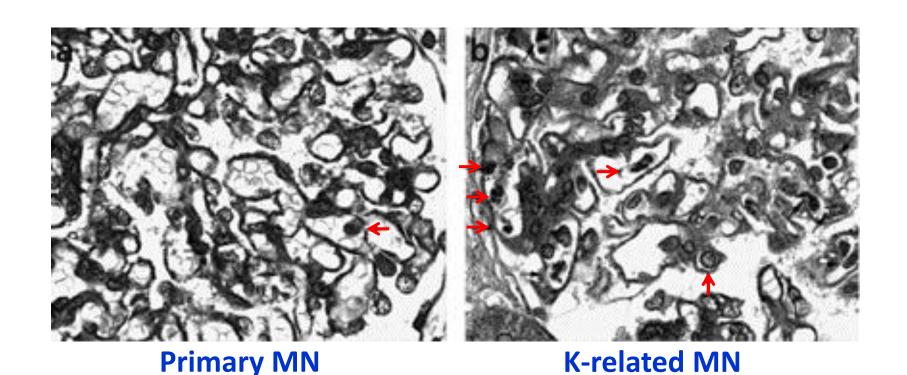
Hamburg/Boston series

Chinese series

Eight/40 patients with THSD7A-associated MN developed a malignancy within 3 months

44 K-associated MN

• 1 THSD7A-Ab + (2%)
Urinary blader cancer > 7 years
before MN

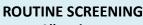

International series

Eight/49 patients with THSD7A-associated MN, but only 3 within 2 years

18 PLA2R-Ab + (41%)Time interval < 6 monthsin 10/18 patients

Wang, Cui, ..., Ronco, Zhao, Clin J Am Soc Nephrol. 2017; 12:164; Hoxha et al, JASN 2017, 28:520; Zaghrini et al, Kidney Int. 2019; 95:666

Presence of inflammatory cells in glomeruli in cancer-related MN



Sensitivity = 92% and specificity = 75% for a threshold of > 8 inflammatory cells/glomeruli

Lefaucheur, Kidney Int 2006, 70:1510

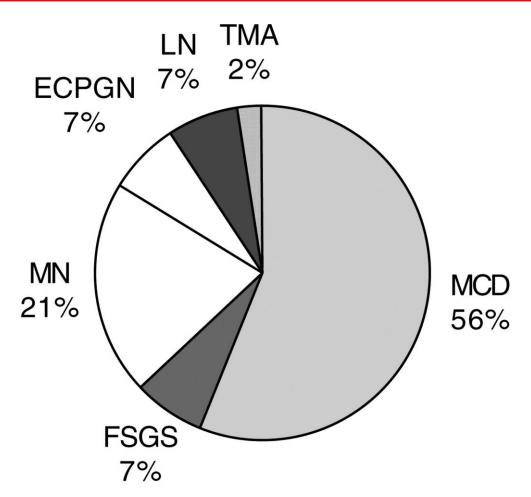
ASSOCIATED GLOMERULAR LESIONS WITH CANCERS ANCA+/ANCA-**Membranous Nephropathy** Minimal change disease crescentic glomerulonephritis focal segmental **IgA Nephropathy** Carcinoma: Lung/bronchus glomerulosclerosis **IgA Vasculitis** Renal/Lung/URT carcinoma GI/Prostate/Renal, Bladder, Breast **Thymoma** Hoddgkin's disease Renal/Lung /URT carcinoma Melanoma Hematologic malignancy **Thymoma MPGN Thymoma** Renal/GI carcinoma (Hematologic malignancy) Renal/Lung/GI carcinoma

All patients

- Patient/family clinical record
- Careful physical examination
- Laboratory testing
- Kidney and urinary tract US
- Standard age-specific screening for cancer (gynecological examination, PAP test, mammography, fecal occult blood test)

TSHD7A + PLA2R -/TSHD7A PLA2R +

SCREENING FOR OCCULT MALIGNANCY Normal routing/targeted screening


TARGETED SCREENING According to patient's risk factors for cancer Search for urine malignant cells +/- cystoscopy Age > 60 years **PSA** test Thrombotic event **Abdominal US** Chest computed tomography **Smoking** Upper respiratory tract examination +/- fibroscopy Search for urine malignant cells +/- cystoscopy **Upper respiratory tract examination +/- fibroscopy** Alcohol abuse Liver US, gastroscopy, serum alpha-foetoprotein **Chronic hepatitis** Liver US, serum alpha-foetoprotein B and C **Exposure to** cyclophosphamide Search for urine malignant cells +/- cystoscopy Doses > 36gr

If malignancy not detected, the patient should be carefully followed because of long-term risk for K occurrence

Other carcinoma-associated glomerulopathies

- IgA nephropathy > 60 years: search for solid tumor in the respiratory tract, the buccal cavity and the nasopharynx
- Necrotic Henoch-Schönlein purpura (HSP): search for cancer of the lung, upper respiratory and digestive tracts (Pillebout, 2002)
- ANCA-associated vasculitis: relative risk x 6 (Pankhurst, 2004)

Thymoma-associated glomerulopathies (n = 40)

- Rat Buffalo/Mna
- Th2 polarization
- Role of Treg

Associated with lymphocyte-predominant thymoma

Outline

- Epidemiology
- Carcinoma-associated glomerulopathies
 - Membranous nephropathy
 - Others: IgA, RPGN/vasculitis, AA-amyloidosis
- Hematologic malignancy-associated glomerulopathies
 - Hodgkin disease
 - CLL, related B-cell lymphomas, Waldenström macroglubulinemia
 - Plasma cell dyscrasias
 - Myeloproliferative neoplasms

Hematologic malignancy-associated glomerulopathies

- Clinical link usually more obvious
- Outcome of kidney involvement parallels that of hematologic malignancy
- Pathophysiological link more easily established, mostly a secreted immunoglobulin or a fragment thereof

Glomerulopathy in Hodgkin lymphoma

- Prevalence in 1700 patients (Plager 1977; Kramer, 1981)
 - minimal change disease (MCD): 0.4 %
 - AA-amyloidosis : 0.1%
- At present, MCD is the prevailing manifestation :
 - revealing the lymphoma in ~ 40% of cases
 - displaying a high frequency of steroid resistance (50%) and ciclosporine resistance (36%)
 - remission induced by effective treatment of Hodgkin lymphoma (even without corticosteroids)
 - usually relapses simultaneously with hematologic malignancy
- MCD seems more frequent with mixed cellularity and nodular sclerosis subtype

Glomerulopathy in Chronic Lymphocytic Leukemia (CLL)

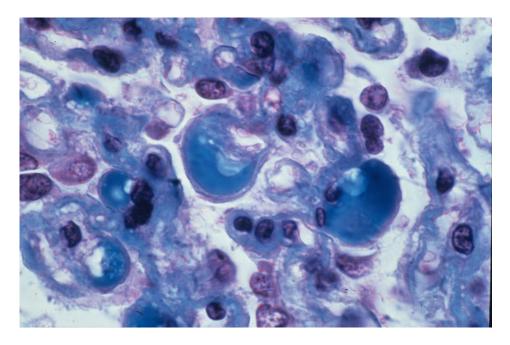
- First association with nephrotic syndrome reported in 1957 (Scott)
- Prevalence of nephrotic syndrome 1% -2%
- Usually fulfills the 3 criteria of a paraneoplastic syndrome
- Cryoglobulin or non cryoprecipitating M-component in ~ 50% of patients (only 5%-10% in those without renal involvement)
- Three major types of glomerulopathy :
 - cryoglobulin-related MPGN (type I or type II)
 - immunotactoid glomerulopathy (atypical MN or MPGN)
 - MIDD

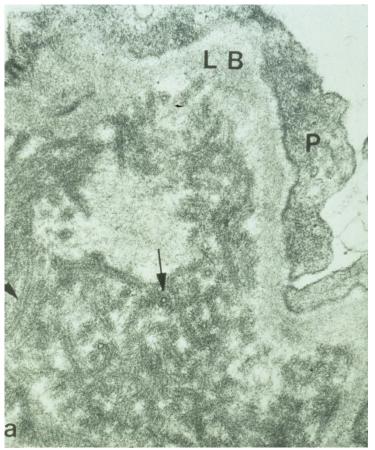
Patient with CLL and acute nephritic syndrome

- 50-years old Caucasian female
- Diagnosis of CLL
- + 3 Years : detection of circulating IgGk
- + 6 Months : Acute nephritic syndrome

S. Creat, 2.8 mg/dL

Proteinuria, 7 g/day, macroscopic hematuria


Type I cryo = IgGk, complement (C') hemolytic activity


not detectable

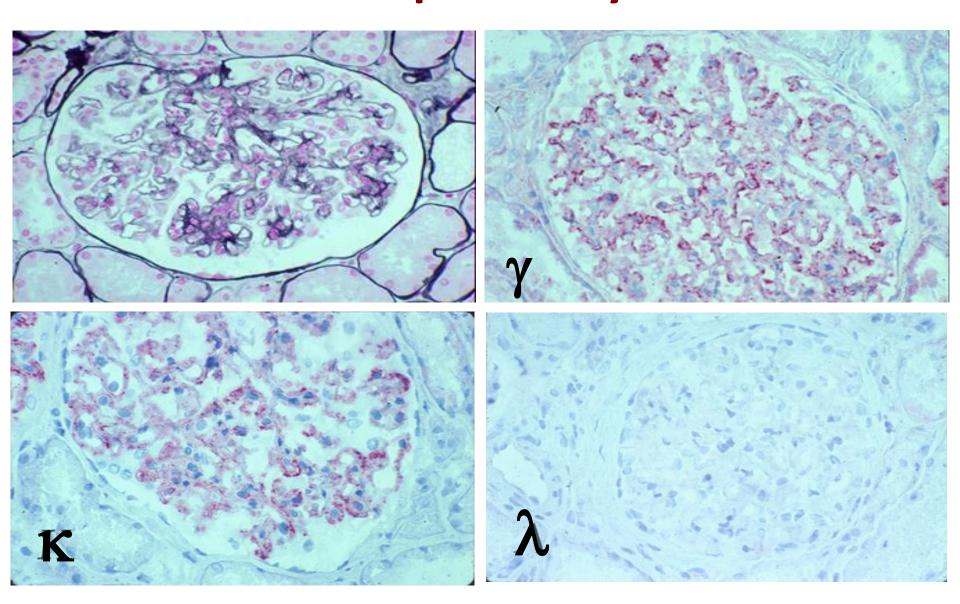
*Kidney biopsy: MPGN with thrombi, IgG, K, C1q, C3

Patient with CLL and type-I cryo

MPGN: thrombi with IgG, K, C1q and C3

After chemotherapy

- S. Creat, 1 mg/dL
- Proteinuria, 1 g/day, RBC < 1000/mL
- Cryo IgGk (0.05 g/L), C' hemolytic activity restored

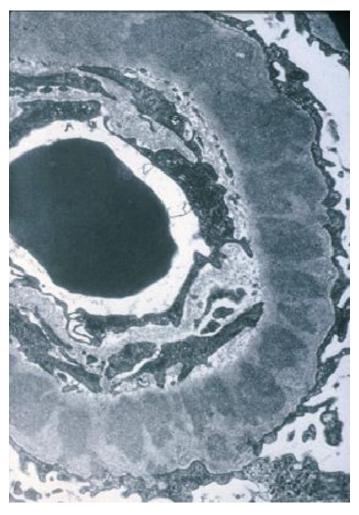

Patient with CLL and the nephrotic syndrome

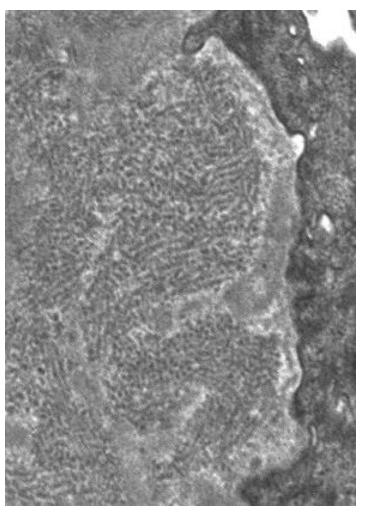
- 59-year old Caucasian male
- 4 years : CLL + nephrotic syndrome (proteinuria = 8 g/day) with hypertension, microscopic hematuria, mild renal failure (sCreat = 1.4 mg/dL)
- \rightarrow No kidney biopsy (platelet count = $36x10^6$ /ml)
- → Chemotherapy : CHOP for 18 months followed by chlorambucil for 12 months
- At the end of chemotherapy :
 - proteinuria: 2 to 3 g/day; serum albumin: 35 g/L; sCreat: 80 μmol/L
 - white blood cell count : 4x10⁶/ml (31% lymphocytes)
 - platelet cell count : 110x10⁶/ml
- → Kidney biopsy

Patient with CLL and the nephrotic syndrome: Immunological data

- γ-globulin = 4 g/L
- No M-component in serum and urine (immunofixation)
- No cryoglobulin
- Complement consumption (CH₅₀ = 33%)
- Cytoplasmic spots in a few blood cells stained with antig and anti-k chain antibodies

Patient with CLL and the nephrotic syndrome

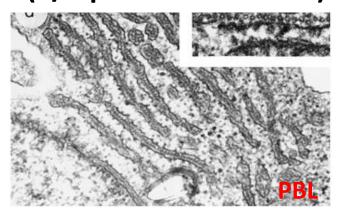


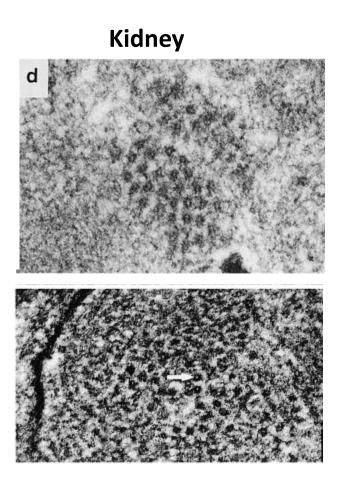

Glomerulonephritis with monotypic γκ deposits

- Amyloidosis (Congo red negative) excluded
- Cryoglobulinemia (type 1) excluded
- Immune-complex like proliferative GN with monoclonal IgG deposits (Nasr et al, Kidney Int, 2004, 65:85)
- Membranous-like glomerulopathy with (not always) masked IgG kappa deposits (MGMID)
- Immunotactoid GN?

→ Electron microscopy

Patient with CLL and the nephrotic syndrome

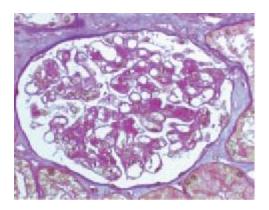


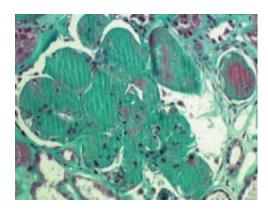


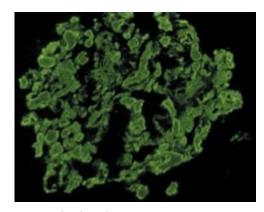
X 4, 400 X 20, 000

Pathogenesis of immunotactoid GN

Same microtubular crystal-like organization in leukemic lymphocytes and in the capillary wall suggests abnormal properties of the monoclonal IgG (4/5 patients with CLL)






Pathogenesis of immunotactoid GN

- Aggregation or crystallization of monoclonal Ig may be due to:
 - autoreactivity
 - reactivity with an as yet unknown antigen
 - structural abnormalities
- No sequence abnormalities in two patients (Bridoux et al, Kidney International 2002)
- Animal model: CD2AP haploinsufficiency induces immuno tactoid deposits, but only in the mesangium (*Kin et al, Science 2003, 300:1298*)

IgM-secreting monoclonal proliferations (including Waldenström macroglobulinemia)

First described by Morel-Maroger as « Waldenström macroglobulinemic glomerulonephritis » (decreased incidence)

Histologic lesions are diverse and may occur in benign IgM
Intracapillary deposits of IgM with or without cryoglobulinemia
AL-amyloidosis
Immunotactoid glomerulopathy
Nonamyloid fibrillary glomerulopathy
Cryoglobulinemia-related glomerulonephritis
MPGN without cryoglobulinemia
Crescentic glomerulonephritis
LCDD

Higgins et al, CJASN 2018,13:1037 (Mayo Clinic)

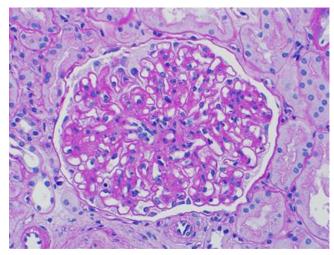
Investigating glomerular involvement in a patient with CLL, related B-cell lymphoma and WM

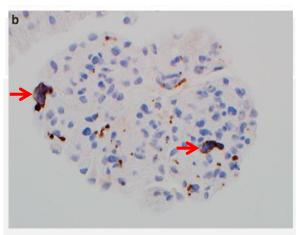
Kidney biopsy:

- establish monoclonality of deposited Ig with anti-LC, anti-HC and anti-IgG subclass antibody (blood M-component often undetectable)
- determine ultrastructure (organization) of the deposits

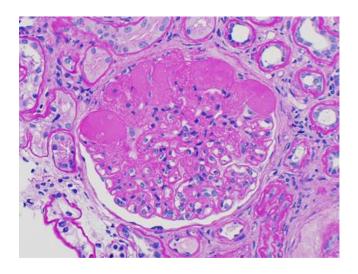
• Serum:

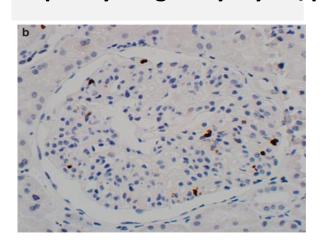
- cryoglobulinic activity
- M-component (IF, FLC assay)


Bone marrow and blood lymphocytes:

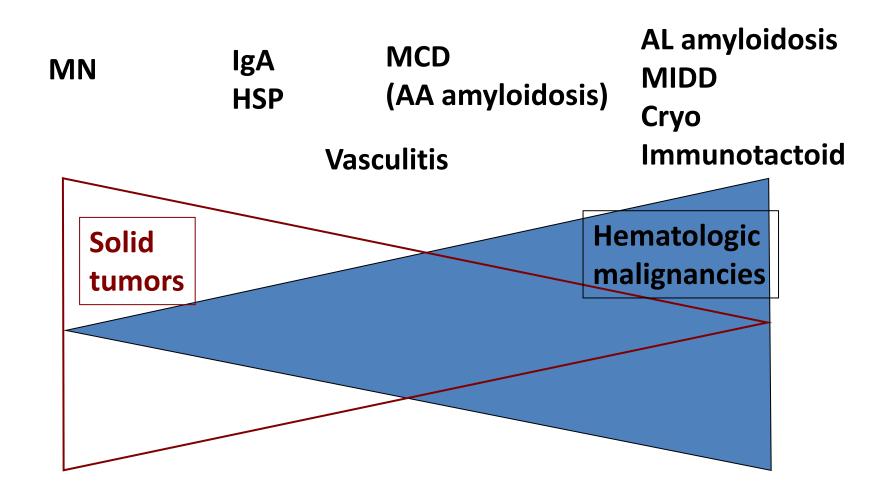

- clonality
- inclusions

Myeloproliferative neoplasmassociated glomerulopathies


- Clonal hematopoietic stem cell disorders characterized by expansion of myeloid lineages
- 11 patients reported by Said et al (D'Agati's group)
- Mean time from diagnosis of the neoplasms to biopsy:
 7.2 years
- Mesangial sclerosis and hypercellularity (n=11), segmental sclerosis (n=8), features of TMA (n=9), intracapillary hematopoietic cells (n=4)
- Follow-up: 7 pts with persistent renal dysfunction, 4 pts progressing to ESRD


Glomerular lesions associated with myeloproliferative neoplasms

Intracapillary megakaryocytes/platelets



Intracapillary immature granulocytes

Said et al, KI 2011, 80 : 753

The spectrum of cancer-related glomerulopathies

Glomerular lesions associated with chemotherapy

Endothelial damage (TMA)

Mitomycin C, gemcitabine, anti-VEGF agents, TKI, mTOR inhibitors, calcineurin inhibitors

Epithelial (podocyte) damage

Collapsing FSGS: pamidronate, mTOR inhibitors, calcineurin inhibitors, interferons α , β , and γ , adriamycin

FSGS NOS: interferons α , β , and γ , calcineurin inhibitors, mTOR inhibitors, daunorubicin

Minimal change disease: pamidronate, interferons α , β , and γ , daunorubicin

MPGN: anti-VEGF agents

Crescentic GN: GM-CSF

Lupus-like nephritis: ipilimumab

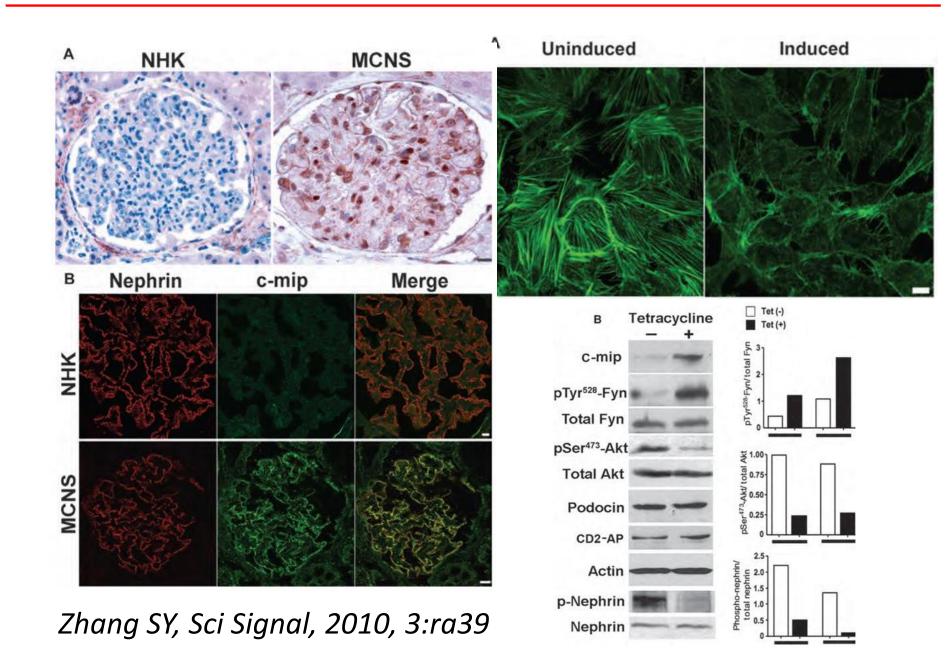
Jhaveri et al, KI 2013, 84 : 34

HSCT-related glomerular diseases

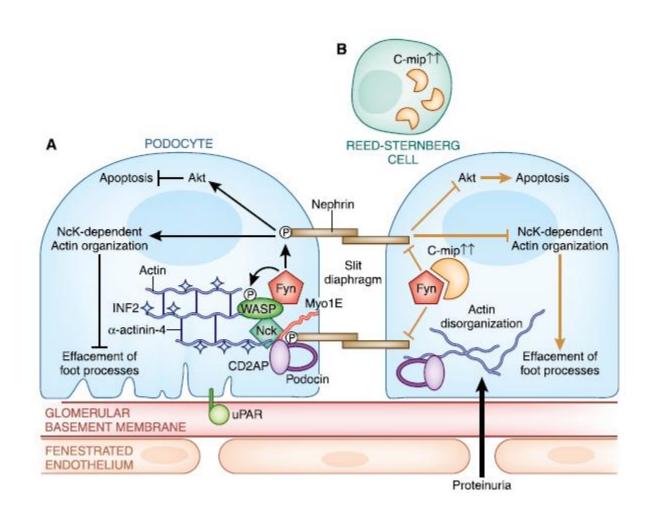
- Glomerular diseases and chronic GVHD
 - Membranous nephropathy (MN)
 - Minimal change disease (MCD)
 - Focal segmental glomerulosclerosis (FSGS)
- Thrombotic microangiopathy following HSCT
 - CNIs
 - Allogeneic transplantation
 - Total body irradiation
 - High-dose chemotherapy

Conclusions

- Clear links between cancer and associated glomerulopathies although the nature of the link remains obscure in solid tumors
- Diagnosis of cancer-associated glomerulopathy is of crucial importance because :
 - the glomerulopathy may reveal the cancer (hematologic malignancy)
 - the glomerular disease usually regress with the complete remission of the malignancy
- These rare tumour complications may help to unravel the pathophysiology of more common diseases
- Chemotherapy and HSCT-related glomerulopathies should also be considered



Pathophysiology of MCD in Hodgkin lymphoma


 Putative circulating factor secreted by T Lymphocytes

Role of c-maf-inducing protein (c-mip)

Pathophysiology of MCD in Hodgkin lymphoma

An hypothetical mechanism of nephrotic syndrome (MCD) in Hodgkin lymphoma

Cambier et al, Clin JASN, 2012 7:1701